
An Adaptive and Compact UART BootLoader

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 1

ANxxxxx
Author: Rolf Nooteboom
Associated Project: Yes

Associated Part Family: PSoC-1
GET FREE SAMPLES HERE (CY Sample Request Form for all Product Lines)

Software Version: PSoC Designer™ 5.0 SP2
Associated Application Notes: None

Abstract
This application note describes how to implement an UART bootloader in your project, without loosing any of the digital- or
analog block resources. Hardware examples includes RS-232 operation, RS-485 operation and Bluetooth operation.

Introduction
In today’s world, many products consist of a microprocessor
or microcontroller. The product’s functionality is defined
within the software running on the processor or controller.
The software is programmed into the product before it
leaves the factory. It may be possible that the software
changes after products are fabricated. For instance: when
functionality is added or when previous software contained
bugs. In this case, the product has to be reprogrammed with
the new software.

There are several possibilities to update software running on
a PSoC™ Mixed Signal Array:

1. Replace the PSoC.

2. Reprogram the PSoC using the In-System Serial
Programming (ISSP) protocol.

3. Reprogram the PSoC using a pre-programmed
bootloader.

The first two options are are generally not predestined for
the product’s users. In case you want a user to be able to
update the product with the new software, a bootloader
implementation is a good feature.

A bootloader application should be easy to handle for the
user. A good bootloader is able to deal with user errors,
such as power interruption when programming or uploading
wrong firmware. On the other hand, the bootloader code
should be as compact as possible and use less to no
system resources.

A Compact UART bootloader
The proposed PSoC™ UART bootloader is self configuring.
This means no dynamic reconfiguration is required for the
bootloader at the target project. Also no RAM is taken from
the target project. The only resource, to be taken in account,
is the usage of less then 1K of flash at the end of the
memory map (fig. 1).

There are several ways to communicate with a bootloader.
For instance: via USB, I2C or SPI. The main reason for

selecting a UART is: all PSoC™ devices support UART.
Older pc’s are equipped with a COM (serial UART) port and
USB-UART bridges are cheap and easy to get. Bluetooth
also supports UART communication.

To ensure reliable data communication between host and
target, all communication is validated with a checksum. To
keep the bootloader compact, no checksum validation is
done on the flash blocks. Additionally, the bootloader
monitors each flash erase- and write-cycle to minimize the
chance of programming error. In cases where high data
security is needed, flash checksum can be implemented.
Figure 1 show the reserved space for future checksum
implementations.

Figure 1. Flash map of a 32 K PSoC™ with bootloader.

UART bootloader 0x7FFF
0x7C40

Configuration block: Startvector +
future use (eg. checksum store)

0x7C3F
0x7C00

User Program Space 0x7BFF
0x0040

Vector Space 0x003F
0x0000

Protected Flash
Read protected Flash

http://www.cypress.com/samplerequest

ANxxxxx

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 2

Bootloader implementation
Host implementation
The bootloader comes with two Windows based
applications. One for adding the bootloader to the project
hex output (figure 2), another for communication with the
target (figure 3). Find them in the ANxxx.zip file.

Figure 2. The bootloader HEXfile application

Figure 3. The bootloader PC application

Firmware implementation
Implementation of the bootloader firmware is very easy.
Take the next steps to add the bootloader to your project:

1. Make sure there is no code or data at the
bootloader space. To accomplish this with the HI-
TECH C compiler, click Project>Settings>Compiler
and type “--ROM=default,-7C00-7FFF” in the
options field.

2. Do a complete project rebuild: Build>Rebuild
Project.

3. Start the BootJoin PC application (figure 2) and
load the Project HEX output and the BootLoader
HEX output.

4. Click Create HEX to create the joined file.

Now the HEX file is created and you are ready to program
the target ☺..

Hardware implementation
The UART needs two I/O pins (RXD and TXD) to
communicate. No handshake is needed. The RXD and TXD
signals are ‘active low’ and can be coupled directly to a
serial driver IC (e.g. a MAX232). For computers without a
serial port, you could use a Bluetooth serial module or USB-
serial converter. Also RS-485 half-duplex and full-duplex
modes are supported. For half-duplex, an extra output is
used for data direction. See the schematics (figure 4) for
details.

To change the pin configuration, the definitions in the
bootloader.h file have to be changed. The following
definitions will set the UART to PORT 1, the RX pin to P1[2]
and the TX pin to P1[0]

<bootloader.h>

#define UARTport 1
#define RXpin 2
#define TXpin 0

The bootloader in use

To update the firmware on your application, proceed the
following steps:

1. Start the bootloader pc application.

2. Connect application to the host pc.

3. Click the Connect button on the pc application.

4. Power up the PSoC application. Now the version
info and silicon ID should appear on the screen.

5. Load the hex file with the firmware at your choice.
This hex file does not need to contain the
bootloader code as it is already in the PSoC’s
flash.

6. Click the Program button and the firmware is
updated.

7. You may disconnect the PSoC application when
the process is finished.

If any of these steps may fail, the bootloader firmware
should still be intact. The bootloader area is write protected
en prevents itself from overwriting.

ANxxxxx

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 3

Bootloader Operation
The bootloader is invoked after a (Power On) reset or by a
jump to the bootloader start address. The bootloader start
address is located at the highest flash location minus
0x03FF (eg: 0x7C40 for a 32K device). First, the bootloader
checks the accumulator. If the accumulator is zero (at a
reset), the bootloader loop time is set to 100 milliseconds. If
the accumulator is set to any non-zero value then the loop
time is set to infinite. In this way it is possible for the main
program to invoke the bootloader on, for example, a
keypress.

If the string ”BOOT” is received, the loop time is set to
infinite and the bootloader doesn’t return until the ‘exit’ (table
1) command is received.

If the sequence (string) ”BOOT” + (char) ”S” + (word)
checksum is received, the bootloader sends the SROM
table 3 information, together with it’s version number. The
SROM information is needed to calculate the FlashErase
and FlashWrite timings. The calculations are done by host
(PC), to minimize bootloader flash size.

A block of 64 bytes is written by the bootloader once the
following data is received: (string) ”BOOT” + (char) ”W” +

(byte) ClockE + (byte) ClockW + (word) BlockID + (byte[])
Data[64] + (word) checksum.

The bootloader operation is suspended at reception of the
following data: (string) ”BOOT” + (char) ”E” + (word)
checksum. At this time the program startvector is written to
the configuration block (fig. 1).

Table 1: the command summary

Bootloader string Command Action
“BOOT” Identification Timer = ∞

“BOOTS” SROM request Send SROM
table 3 info

“BOOTW” Write Block Write 64
bytes of flash

“BOOTE”
Exit

Exit
bootloader,
start main

Figure 4. The bootloader operation flowchart.

ANxxxxx

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 4

ANxxxxx

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 5

About the Author (optional)
Name: Rolf Nooteboom

Title: Hard- and software designer and
owner at Nooteboom Elektronica, The
Netherlands

Background: R. Nooteboom started an Electronics
Design House in 1994. With the
majority of 8 bit controller designs,
Nooteboom started working with PSoC
since it’s introduction in 2001. Certified
CYPros PSoC and Intelligent Lighting
consultant.

Contact: rolf@nooteboom-elektronica.nl

+31 492 880215

Document subject-specific trademark information, if any.
Example - PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC
Express are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

The blue bar and the information below it are placed at the bottom portion of the page.

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

ANxxxxx

March 13, 2009 Document No. 001-08990 Rev. *B (AN# is same as last 5 digits of doc #.) 6

Document History Page
Document Title: Application Note Template in MS Word

Document Number: 001-08990

Revision ECN Orig. of Change Description of Change
** 483207 YIS New Spec.
*A 823941 HMT Update copyright. Add software/firmware disclaimer. Add Sample

Request form URL. Add Character Set Quick Reference table. Add
Sample Request From explanation. Add App. Note # and document #
relation in footer. Suggest Firmware Flowchart as Figure 1. Add Equation
Title style.

*B 1331006 HMT Update gray to CY blue. Modify first-page header and AN Title for search.
Fix symbol and bullets. Fix off color in text. Add AN bookmark field for
AN# in header. Add secondary bullet. Update Equation style. Add
Summary heading. Add subject-specific trademark information.
Coordinate everything with FrameMaker template.

The Document History Page is only for approval of this template and must be deleted.

	Abstract
	Introduction
	A Compact UART bootloader
	Bootloader implementation
	Host implementation
	Firmware implementation
	Hardware implementation

	The bootloader in use�
	Bootloader Operation

